l\
(NMUODB

Technical White Paper
Version 3.1




¢
NUO

For a long time a few database incumbents and a few open source projects provided
sufficiently capable relational database solutions. Almost every data problem fit into
a one of these few database solutions. SQL was a common denominator and a vast
amount of software was written to use these relational databases. This worked very
well until the explosive growth of the Internet took hold and provided companies
with an almost infinite amount of data to process. The volume of data pushed the
incumbent RDBMS databases beyond their design limits. Companies were forced to
build in-house solutions, to innovate on their own.

We have surveyed and learned from the innovation that resulted. We borrow
techniques from many different proven solutions. We take those techniques and use
them to enable a new SQL RDBMS solution with all the familiarity of yesterday’s
database but none of the limitations.

NUODB Architecture

338

ey

operationally NUODB provides
EXECUTIVE SUMMARY relational database services by running
many collaborating processes across
any number of machines. Brokers
securely connect client applications to
their databases. Transaction Nodes
interact with clients processing SQL
queries. Transaction Nodes run in-
memory, and so are not constrained by
storage issues. Archive Nodes collect
and store all database state to durable

NUODB is a relational database; simply
connect via JDBC and use SQL as
expected. From the perspective of a
client application NUODB is no
different than any other relational
technology, but that’s where the
similarities end. Unlike centralized,
shared state database designs

Company Confidential Page 2 of 8



¢

NUO

storage. They also provide data to
Transaction Nodes for processing. To
add more capacity simply add more
Transaction Nodes. NUODB scales
elastically up and down as your needs
change.

FOUNDATIONAL TECHNOLOGIES

The fundamental technologies of
NUODB are multi-version concurrency
control (MVCC), on-demand data
replication, and an optimistic
asynchronous communication model.
Together, these technologies minimize
communication cost while providing
the full benefits of relational databases
- data abstraction and ACID
transactions on a cloud of computers.

MVCC

Multi version concurrency control
provides lock-free concurrency control
at the record level. An update does
not replace the stored record and a
delete does not remove it. Instead,
NUODB manages multiple versions of
the record carefully tracking which
versions belong to each transactional
context. Each transaction reads the
most recent version of the record that
was committed when the transaction
started. Transactions see a stable view
of data; except for the changes they
make themselves.

MVCC eliminates read/write conflicts

by allowing the writer to create a new
version without changing the readers’
view of data and by allowing a reader

Company Confidential

access to a stable view of data even if
it has been changed by a concurrent
transaction.

MVCC eliminates write/write conflicts
by restricting transactions so they can
modify or delete records only if the
most recent version of the records is
the one the transaction sees.

MVCC transactions are consistent and
require less communication than
transactions that use traditional
locking or 2PC for concurrency control.

Data Migrates On-Demand

A computer in a NUODB cloud retains
only those parts of the database that
its application clients require. The data
retained changes over time, as the
client application’s needs change.
NUODB has no fixed partitions and no
slaved replicants. Data migrates on
demand. The distribution of data
changes to match activity on the
system. Some data may be present on
all computers; some may reside only in
an archive; some may exist on a few
computers. Data distribution shifts to
reflect application changes, cyclical
changes in requirements, and new
applications.

Node Communication

Inside a NUODB database you will find
“atoms”, self-describing data and
metadata that together comprises the
“database” - schema, indexes, data.
For example, each table is an atom
that describes the metadata for the

Page30f 8



¢

NUO

table and references other atoms that
describe ranges of records in the table
and their versions. Copies of the atom
describing a particular table may be
present on several computers. When
an atom changes that node sends
messages to the other nodes that also
have copies, replicating the changes.
All inter-node messaging is done using
asynchronous reliable queues.

NUODB IN DEPTH

MVCC, on-demand replication, and an
atomic view of data when properly
combined represent a new and
complex method for distributed
transactional processing in relational
database systems. The remainder of
this paper describes them in more
depth, presents some use cases and
operational functions, and ends with a
discussion of NUODB and the CAP
theorem. Because NUODB introduces
a number of new concepts, this
section starts by introducing some
terms that make it easier to discuss the
concepts.

It progresses to a discussion of MVCC,
a more in-depth discussion of atom
types, and then

Vocabulary

A node is a computer, virtual or
physical, that will be running processes
that together service database
requests.

Company Confidential

A communications broker is a process
running on at least one node that
provides applications SQL/JDBC access
to a NUODB database.

A transactional node is a process
running on a node that executes the
SQL layer operating on database
atoms and listening to and
communicating changes with its peers.

An archive node is a process running
on a node that maintains a durable
archive of database state on
permanent storage, such as a disk
drive.

A chorus is a group of nodes that
together form an operational NUODB
database. A database is defined by its
SLA, which specifies the kind, quality
and quantity of nodes required to be
considered available.

A duet is the minimum size for a
NUODB chorus, consisting of one
transactional node and one archive
node.

A multi-tenant cloud is a set of nodes
managing more than one chorus - i.e.
a cloud running two or more
independent databases. A node can
participate in more than one chorus.

The SQL layer parses, compiles, and
optimizes SQL queries. It runs on
transactional nodes. The SQL layer
uses the atoms on its node for data,
including metadata, and for
transaction control.

Page 4 of 8



¢

NUO

The atom layer controls data access,
versioning and concurrency. Every
node in the chorus manages atoms by
sharing copies with other nodes.

An atom is the basic unit of exchange
between nodes. The representation of
an atom varies to optimize for access
in-memory, encoding on the wire, and
archival on disk.

Concurrency Control

NUODB uses multi-version
concurrency control (MVCC) both to
give each transaction a consistent view
of data and to prevent concurrent
transactions from overwriting each
other’s changes. Thisis a new
adaptation of the principals behind
MVCG, it is distinct from “snapshot
isolation”. MVCC and snapshot
isolation are widely used terms for an
alternative to record locking that
preserves transactional consistency
and isolation.

NUODB virtually eliminates database
locking in favor of coordinated
distributed version management. Our
approach eliminates the need to
communicate locking messages
between nodes to provide ACID
transactions.

Database Consistency

Databases must present consistent
views to applications within the
context of a transaction. However, a
transactional consistent view of the

Company Confidential

database is relative to the instant the
transaction started. A transaction that
stays active for an hour continues to
see the database as it was at the
beginning of the hour. A new
transaction sees a different view, even
though the two run concurrently.

Communication latency can only delay
the recognition of commits on other
nodes; it can never make a transaction
appear committed when it is not.

ACID

NUODB transactions are atomic. All
the changes made by the transaction
are either made permanent when the
transaction commits, or are
completely removed from the
database.

NUODB transactions are consistent.
They transform the database from one
consistent state to another as defined
by the constraints in the schema,
explicit (unique constraints, check
constraints) or implicit (no alphabetic
characters in numeric fields). Each
transaction sees a consistent view of
the database.

NUODB transactions are isolated. No
transaction can see changes made by
transactions that were not committed
when it started — except, of course, its
own changes. MVCC also prevents
transactions from overwriting changes
from concurrent transactions.

NUODB transactions are durable with
or without disks.

Page 5 of 8



¢

NUO

Durability

NUODB handles durability differently
from most databases. By default,
changes are durable when they are
present in memory on at least two
nodes, including an archive node, even
before that archive has flushed the
data to disk. Durability is a matter of
degrees; most systems survive a server
crash, but not a disk crash on the
primary database disk. Replicated
systems survive disk crashes, but are
vulnerable to data center explosions.

In NUODB, the first line of defense for
durability is distributing changes to at
least two archive nodes, but that’s
defined by your Chorus SLA and may
not be a requirement.

NUODB archive nodes can write a non-
buffered log of replication messages,
which will allow the archive node to
recover the state of the database at
the instant of the crash. Under heavy
load, the performance cost of the disk
write is significant and should be
weighed against other options.

DATA MIGRATES ON-DEMAND

The second core technology of NUODB
is partial on-demand replication.
Schemas, tables, and data are neither
fixed on one node nor present on all
nodes. Abstractly, when a node needs
data, it asks a peer node that has the
data for a copy. While it is using the
data, the node keeps it in memory. If it
changes the data, it broadcasts

Company Confidential

replication messages to other copies
of the data. When the datais no
longer useful, the node releases it,
freeing up memory and reducing its
message load.

Node Communication

The third core technology of NUODB is
inter-node communication to maintain
database atoms. When an atom
changes, its node broadcasts replication
messages to the other nodes
maintaining copies of that atom. Nodes
in the chorus that do not have copies of
that atom do not get those replication
messages.

Understanding how partial replication
and communication actually work
requires understanding the
architecture of NUODB in more depth.

NUODB ARCHITECTURE

Layering

From the point of view of a client
application, NUODB is very much like
all other relational databases. It has a
Java/JDBC interface that allows clients
to read and write data, create and
drop domains, tables, schemas,
indexes, etc. Client applications are
not aware that the database is not
local.

SQL is parsed and executed on
transactional nodes, this is where
client requests are serviced. Database

Page 6 of 8



¢

NUO

metadata related to system tables is
also represented as atoms. The SQL
layer updates system tables with SQL
metadata statements that create,
alter, and drop metadata objects.

Traditional databases have page
caches and 1/O subsystems below the
SQL layer. NUODB has a data
distribution and replication layer that
manages manages transactions over
atoms. The interaction between the
SQL layer and the atoms is primarily
related to transaction management,
metadata creation and change, and
reading and writing records.

Archive nodes

Archive nodes serialize atoms to disk.
If a transactional node needs an atom
that no longer exists on any other
transactional node, it gets the atom
from an archive node.

The functions of archive nodes are to
write changed atoms to disk, to be the
source of last resort when
transactional nodes need atoms that
do not exist elsewhere in the cloud,
and to undo changes made by active
transactions on nodes that disappear
from the cloud.

Durability, Transaction Commits, and
the CAP theorem

Durability is a relative property. What
is sufficiently durable for one
application may not be durable
enough for another. Traditionally,

Company Confidential

durability in databases has required
that all committed data is on
permanent stable storage.
Unfortunately, disk technology is not
100% reliable, there are many ways in
which a single drive might fail.

One way of looking at durability is
“how many failures must be
survivable?” Most database systems
survive a power failure or server crash,
but not the loss of a disk holding part
of the database. Shadow disk volumes
and slaved databases increase the
number of survivable failures, but
durability in the case of an explosion in
the data center requires offsite
replication.

NUODB supports several levels of
durability, some of which depend on
the hardware configuration. Ata
minimum, before a commit completes,
all changes made by a transaction
must be in memory in two places, one
of which is an archive node. The
transaction that wants to commit
sends out a pre-commit message. The
archive node receives the pre-commit
and responds with a commit.

That configuration survives the crash
of any one node. Adding more archive
nodes increases the number of
survivable simultaneous failures,
especially if the application has
specified that changes must be on two
or more archive nodes before a
commit completes. Adding a remote
archive node in protected data center
in a remote location also increases

Page 7 of 8



¢

NUO

durability with perhaps some cost in
latency.

One of the challenges for distributed
systems is the CAP theorem, which
states that you can have consistency
(important), availability (critical), and
resistance to network partitions, but
not all three. By default, NUODB is
consistent and available, but only
slightly partition resistant. Because a
transaction cannot commit without
having all changes on an archive node,
any partition that separates
transactional nodes from all archive
nodes causes those nodes to stall until
the partition is resolved. Those
transactional nodes that have
communication with archive nodes can
continue to work.

When transactional nodes disappear
from the cloud, the archive nodes
dismiss their uncommitted changes.
Archive nodes serialize and de-serialize
atoms, but the only time an archive
node changes the content of atoms is
after a transactional node disappears
from the chorus. If an archive node
recognizes that it has replication
messages from a node that has
disappeared before its commit
messages arrived, the archive node will
back-out the changes made by that
node.

By configuring “coteries” of nodes, an
installation can make its chorus
resistant to partitions that include
archive nodes on both sides of the cut.
A coterie is a set of archive nodes,

Company Confidential

designed so that there are no disjoint
coteries in the chorus. In other words,
every coterie shares at least one
archive node with every other coterie.

If there are no disjoint coteries, no two
coteries can survive a network
partition. The coterie that survives
completely can continue to work. The
others must wait for a network to
reconnect. When using coteries, a
transaction is not committed until one
archive node from each coterie has
responded with a commit message.

It is possible that no archive nodes will
survive some cataclysmic event.
Defining coteries does not guarantee
that there will be a surviving sub-
chorus, only that there will never be
two separate surviving sub-choruses.

If the CAP theorem means that all
surviving nodes must be able to
continue processing without
communication after a network failure,
then NUODB is not partition resistant.
If partition resistance includes the
possibility for a surviving subset of the
chorus to sing on, then NUODB refutes
the CAP theorem.

CONCLUSIONS

NUODB uses some well-known
distributed systems and database
techniques in a novel way to create a
profoundly different approach to
relational database design. Prior to
NUODB there existed no SQL database
capable of managing data elastically at
scale.

Page 8 of 8



